Mac本地RAG文档问答——Llama2 & ChatGLM3(量化版) & Ollama

过去文档检索的基本技术框架,中间每一步都有相当的技术复杂度,过去只有大厂在有巨大需求的场景去实现这样的能力。但是LLM的出现,让文档检索这件事情的门槛骤然降低,用向量数据库就可以轻松构建自己的文档检索系统,结合LLM的对话生成能力,真正实现文档问答的能力。

Mac本地RAG文档问答——Llama2 & ChatGLM3(量化版) & Ollama
读《通向AGI之路:大型语言模型(LLM)技术精要》笔记整理

ChatGPT出现后惊喜或惊醒了很多人。惊喜是因为没想到大型语言模型(LLM,Large Language Model)效果能好成这样;惊醒是顿悟到我们对LLM的认知及发展理念,距离世界最先进的想法,差得有点远。本文试图回答下面一些问题:ChatGPT是否带来了NLP乃至AI领域的研究范式转换?如果是,那会带来怎样的影响?LLM从海量数据中学到了什么知识?LLM又是如何存取这些知识的?随着LLM规模逐步增大,会带来什么影响?什么是In Context Learning?为什么它是一项很神秘的技术?它和Instruct又是什么关系?LLM具备推理能力吗?思维链CoT又是怎么做的?等等,相信看完,能让您对这些问题有一个答案。

读《通向AGI之路:大型语言模型(LLM)技术精要》笔记整理