读《面向大语言模型的检索增强生成技术:综述》笔记整理在这篇综述中,我们关注的是面向大语言模型(Large Language Model)的检索增强生成技术。这项技术通过结合检索机制,增强了大语言模型在处理复杂查询和生成更准确信息方面的能力。大语言模型 (大语言模型,LLMs) 虽展现出强大能力,但在实际应用中,例如在准确性、知识更新速度和答案透明度方面,仍存在挑战。检索增强生成 (Retrieval-Augmented Generation, RAG) 是指在利用大语言模型回答问题之前,先从外部知识库检索相关信息。RAG 被证明能显著提升答案的准确性,并特别是在知识密集型任务上减少模型的错误输出。通过引用信息来源,用户可以核实答案的准确性,从而增强对模型输出的信任。